

Evaluation of a Novel Quantitative Assay for Factor V Leiden

Hickey KP, Cooper PC & Kitchen S.

Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, UK.

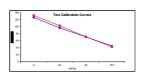
Introduction

- · Hemoclot Ouanti F-L (Ouadratech, UK) is a clotting assay designed to measure Factor V Leiden (FVL) levels in citrate plasma.
- · The assay is performed in the presence of activated protein C (APC) and protein S (PS) with the prolongation of the FXa triggered clotting time being inversely proportional to the concentration of FVL (%FVL).

Aim

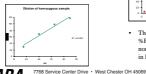
- · Evaluate Ouanti F-L assay ability to discriminate between FVL subtypes; heterozygous (Het), homozygous (Hom) and wildtype (Wt)
- · Compare Quanti F-V to Coatest APC Resistance V assay (Chromogenix).

Subject Groups


- · 39 FVL wildtypes
- · 33 Heterozygous FVL · 3 Homozygous FVL
- · Wildtype status established utilising PCAV screening test (Diagnostic Reagents, UK)
- · Het and Hom status evaluated using LightCycler (Roche Diagnostics)

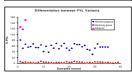
Method

- · The assay is performed on dilute test plasma to which a reagent containing fixed concentrations of prothrombin, fibrinogen, APC and PS is added
- · A second reagent containing purified FXa and phospholipid is added with clotting initiated through the addition of CaCl, (0.025M).


Calibration

- All testing performed on an ACL Top (IL. UK).
- · Three human plasmas (Hyphen, BioMed) reconstituted and diluted in buffer are equal to 9, 24, 50 and 100% FVL.
- · Two calibration curves performed generated R2 values of 0.994 and 0.999

Precision


- A FVL absent control material tested (n=10) generated coefficient of variation (CV) of 11.2%
- · A known heterozygous (n=6) generated CV of 3.6%
- · A known FVL hom was diluted to assess how well the assay estimates FVL at different concentrations.

Results

Group	Quanti F-L Mean (Range)
Wt (n=39)	3.6 (0.8-7.5)
Het (n= 33)	57 (31-81)
Hom (n= 3)	131 (117-150)

LFVL.	Concentration	of FVL in subtype:	٠.
40 -			
20 -			:
00 -			
50 -		•	
50			
40			
20			

· There was no significant difference between %FVL in warfarinised (n=12, mean 57.4%) and non warfarinsied patients (n=21, mean 58.8%) in heterozygotes (p=0.6623).

Coatest APCR-V

- · Coatest APC-R is a commonly used screening tests for FVL.
- Patient samples diluted in FV deficient plasma have APTT performed in the presence and absence of APC.
- · Ratio of clotting times calculated.
- · A subset of patients were tested by both methods and results compared.

Group	Quanti F-L Mean (Range)	Coatest Mean (Range)
Wt	3.9	3.1
(n=29)	(0.8-7.5)	(2.5-3.8)
Het	56	1.9
(n= 13)	(31-68)	(1.6-2.1)
Hom	137	1.2
(n=2)	(125-150)	(1.2-1.3)

Conclusion

- Hemoclot Quanti F-L is a simple assay to perform on ACL Top and demonstrates strong differentiation between patient groups in samples
- · Assay compares well with the Coatest APC Resistance assay.
- · Quantification of %FVL may be useful but requires further studies

Toll Free: 866.783.3797

Fax: 513.573.9241 Email: info@aniara.com

Form AH118 02-2010