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Abstract

Statistical features of a base-specific Salmonella mutagenicity assay are considered in detail, following up on a previous
Ž .report comparing responses of base-specific Salmonella Ames IIe strains with those of traditional tester strains. In

addition to using different Salmonella strains, the new procedure also differs in that it is performed as a microwell

fluctuation test, as opposed to the standard plate or preincubation test. This report describes the statistical modeling of data

obtained from the use of these new strains in the microwell test procedure. We emphasize how to assess any significant

interactions between replicate cultures and exposure doses, and how to identify a significant increase in the mutagenic

response to a series of concentrations of a test substance. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Salmonellarmicrosome reversion assay has

been used extensively in genetic toxicology testing
w x1–4 . The procedure employs bacterial tester strains

that identify the reversions of missense and small

frameshift mutations in the his operon. Despite the

widespread acceptance of this test, new Salmonella

)
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tester strains are constantly being developed and
w xstudied. In a previous report 5 , we discussed the

use and validity of a series of six new hisy mutant
Žstrains TA7001, TA7002, TA7003, TA7004,

.TA7005 and TA7006 , each of which was designed

to revert to his independence by unique base-pair
w xsubstitutions 6 . The TA700X series of tester strains

Žhas been designated ‘‘Ames IIe’’ Xenometrix,
.Boulder, CO, USA .

In order to help automate the data collection

process, and to allow the assay to be adapted to

high-throughput, robot-controlled procedures, a mod-
w xified fluctuation protocol 7,8 has been developed

1383-5718r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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Žfor use with the TA700X tester strains AMAXe:
.Ames II Mutagenicity Assays by Xenometrix . In

our previous report on the AMAXe procedure, the

performance of these strains was compared with the

results obtained using the traditional Salmonella
w xtester strains in a preincubation procedure 4,5 .

ŽThirty coded chemicals five of which were dupli-
.cates with different code numbers were tested in the

individual strains TA7001–TA7006 to identify muta-

gens that produced base-pair substitutions, in a mix-

ture of these six strains, and in the traditional strains

TA98 and TA1537 to detect frameshift mutagens.

All testings were done using a modified liquid fluc-

tuation test procedure as designated in the AMAXe

protocol. The results were compared to results ob-

tained previously using a preincubation protocol with
Ž .strains TA98, TA100, TA1537 or TA97 and

w xTA1535 5 .

One important component of the validation effort

in this previous study was proper recognition and

adjustment for the various sources of statistical vari-

ability in the AMAXe data. However, the statistical

analysis of those data was conducted at an introduc-

tory level only. The current manuscript presents

more detailed statistical aspects of the AMAXe

assay, based on the data from the previous validation

study. The issues discussed include the aspects of the

sampling protocol, the possible interactions between

cultures and exposures to mutagens, and the identifi-

cation of exposure-related effects using a form of

generalized linear statistical model. Recommenda-

tions are made for statistical analysis of microwell
Ž .fluctuation test e.g., AMAXe data from these

Salmonella strains.

2. Methods

2.1. AMAXe protocol and experiments

Eight individual Salmonella typhimurium strains

and a mixture of the base-specific strains were em-

ployed in our previous report, where the strains and
w xtheir genotypes are described 5 . Each of the six

Ž .base-specific strains TA7001–TA7006 carries a

target missense mutation in the histidine operon,

which reverts to prototrophy by base-substitution

events unique to each strain. Strains TA7001,

TA7002 and TA7003 detect base substitutions at

A:T base pairs, while TA7004, TA7005 and TA7006

detect base changes at G:C base pairs.

The TA700X strains are not designed to identify

mutagens that induce only frameshift mutations.

Thus, routine tests of unknown chemicals must also

use one or two of the traditional strains that are

designed to detect frameshift mutations, viz. TA98

and TA1537. For the purposes of the previous study
w x5 , these two strains were used in the AMAXe

procedure along with the TA700X strains.

All 30 coded chemicals were studied without

exogenous metabolic activation. Those that appeared
Ž .to be negative in the initial test 18 out of 30 using a

subjective, non-statistical assessment were also tested
Ž .in the presence of S9 4.5% rat liver S9 fraction , in

order to allow for possible metabolic activation.

Protocols used to generate the data analyzed herein
w xwere detailed in our previous report 5 . Data were

collected for a positive control, five doses of each
Ž .test chemical including a zero-dose control , and for

a solvent control. Each culture was treated indepen-

dently with the test chemical in a total exposure
Ž .volume Exposure Medium of 0.5 ml per dose, in

triplicate. Following exposure, 2.5 ml of selective
Ž .medium Indicator Media was added and 50 ml

aliquots were dispensed into 48 wells of 384-well

microtiter plates, either manually or using a ML
Ž .2200 pipeting station Hamilton, Reno, NV . Each

experiment was performed using three independent

cultures by one of two teams of experimenters on the

same day andror up to 3 weeks later. Each culture

was inoculated from separate frozen vials, although

each vial of cells used for the study was from the

same production lot. Each chemical was tested up to

5 mg, the maximal tolerated dose, or the limits of the

solubility, whichever was reached first.
w xA concern noted previously 5 with this assay

system is that under otherwise-homogeneous prepa-

ration, a few cultures may exhibit an extreme re-

sponse, called jackpot mutations. Jackpots result

from reversion events that occur early in the growth

of the overnight culture, such that the wild-type

revertant population expands during the overnight

growth and pre-exists in the culture before exposure

to the test agent. High spontaneous counts are usu-

ally attributed to jackpot mutations, and may obscure

any increase in reversion events caused by the test
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agent. The frequencies of jackpots for the different

strains correspond to each strain’s individual inher-

ent genetic instability. For example, 6% of cultures

of TA1537 exhibited high spontaneous positive wells,

while TA7001 and TA7006 cultures did not exhibit

any jackpot mutations.

Where jackpot mutations were observed to ob-

scure the results, the experiments were repeated. The

final data set may have included experiments where

jackpot mutations did not affect the overall results

and were therefore included in the analysis. Statisti-

cally, the presence, or even the possibility of jack-

pots associated with individual cultures must be

viewed as a source of additional variability in this

assay, and some adjustment or correction must be
Ž .made to account for it in the analysis see below .

2.2. Statistical models

The basic experimental design of the AMAXe

Žassay for any given chemical in the presence or
.absence of S9 consists of an exposure regimen

involving an untreated control, a solvent control, a

positive control, and four increasing doses of the

chemical. The doses are indexed via ks0,1, . . . ,4,
Ž .where ks0 indicates the untreated zero-dose con-

trol. Each dose was tested in triplicate in aliquots of

each independent culture, and each experiment was

performed three times, thus using three different

overnight cultures of the Salmonella strains. This

design yielded three experiments, each consisting of

a series of solvent controls and chemicals tested in

triplicate.

Statistically, the experimental response is a set of

dichotomous outcomes in 48 wells of a 384-well

plate. Each well is scored for growth of hisq rever-
Žent bacteria growth is indicated by a positive yellow

.well, vs. an otherwise purple well , and we record 0

for purplernegative growth, or 1 for yellowrposi-

tive growth.
Ž .For the ith plate is1,2,3 in the jth culture

Ž .js1,2,3 at the k th dose level, we denote by

X r48 the proportion of mutagenic wells observedi jk

for a given combination of chemicalrstrainrS9. In

this design, cultures are crossed with dose levels,
w xrepresenting a form of two-way design 9 . Because

each culture appears at each dose level an equal

number of times, the two-way design is balanced.

The standard statistical model for X is thei jk

w xbinomial distribution 10 . Data across plates within

any culturerdose combination are assumed homoge-

neous; we pool these values into a single summary
� 4proportion, say Y r144s X qX qX r144,jk 1 jk 2 jk 3 jk

Ž .and write Y ;Binomial 144,p , where p is thejk jk jk

Ž .unknown probability of mutation in the jth culture

at the k th dose level.

To adjust for the effect of jackpots and to analyze

more generally the mutant proportions for any chem-

icalrstrainrS9 combination, we chose to take advan-

tage of the balanced feature of the treatment design
Ž .through a form of analysis of variance ANOVA

appropriate for binomial proportions. Specifically,

we applied a generalization of the common ANOVA

model, known as the Generalized Linear Model, or
w xGLiM 11 . A GLiM can involve two specialized

Ž .components: i a statistical model for the data other
Žthan the normal in our case, based on the observed

. Ž .binomial proportions , and ii a function that links

the unknown mutation probability p to the featuresjk

Ž .of the treatment design. For component i , we incor-

porated the binomial assumption on Y ; for compo-jk

Ž .nent ii , we recognized an experimental feature that

induces a specialized form of link function. Specifi-

cally, we assumed that the random number of muta-

tions per well, say U , is described by a Poissoni jk

distribution with unknown, positive mutation rate

l )0. Of course, U is unobservable; all that isi jk i jk

recorded is whether any mutations occurred in a

given well. Thus, the per-well Poisson variate U isi jk

truncated to the dichotomous observation X , whichi jk

equals 1 if any mutations occurred in that well, and 0

otherwise. Denote the probability that X equals 1i jk

by f . Then under this truncated Poisson model,i jk

f is given byi jk

f sP X s1 sP U G1i jk i jk i jk

s1yP U s0 s1yexp yl ,� 4i jk i jk

the latter equality following from the basic form of
w xthe Poisson probability mass function 10 . Assuming

that triplicate wells are homogeneous, and thus, that

no per-plate effects are present, we may drop the i

subscript in l.
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The usual ANOVA formulation for the mean

response under a two-way design is a linear combi-

nation of the unknown effect parameters:

mqg qd qc , 1Ž .j k jk

where for our setting, m is an overall effect parame-

ter, g is a term for the culture effect, d is a termj k

for the dose effect, and c represents a possiblejk

Ž .interaction between culture and dose. In Eq. 1 , gj

represents a ‘‘blocking’’ term that accounts for any

jackpot-related culture-to-culture variability.

In most ANOVA settings, the linear expression in
Ž .Eq. 1 is set equal to the mean response and ana-

Ž .lyzed accordingly. Here, however, equating 1 to

the mean mutation rate l fails to account for thejk

constraint that l must be positive. To overcome this,

we can model l itself as an exponential form:jk

l sexp mqg qd qc . 2� 4 Ž .jk j k jk

Ž .Under Eq. 2 , l is guaranteed to be positive forjk

any realization of the linear effect parameters in Eq.
Ž .1 .

Collecting all of these model components to-

gether, the resulting GLiM may be written as Y ;jk

Ž . � wBinomial 144,p , where p s1yexp yexp mqjk jk

x4g qd qc and Y is the sum over the threej k jk jk

replicate plates of the mutant wells at the jth culture
Ž . Ž .js1,2,3 and the k th dose ks0,1,2,3,4 for any

chemical compound being tested. Inverting this

model for p gives:

log ylog 1yp smqg qd qc , 3Ž .� 4Ž .jk j k jk

which is known as a complementary log–log GLiM
w x10,11 .

2.3. Statistical analyses

Under the complementary log–log GLiM in Eq.
Ž .3 , we can assess whether there is an effect due to

the dose after correcting for possible culture-to-cul-

ture variability. As is well known, however, it is

inappropriate to test for any main effects due to

individual factors, such as dose, in the presence of a

significant interaction. Indeed, P-values for testing

the main dose effect possess no sensible inter-

pretation if given in the presence of a significant in-
Ž w x.teraction see Ref. 9 . Thus, before assessing the

dose-related effects for any chemicalrstrainrS9

com-bination under study, we first must test the null

hypothesis of no interaction. This translates to H :o

c s0 for each j,k, vs. an alternative hypothesisjk

that c /0 for some combination of j and k. Hjk o

may be assessed via a likelihood ratio test, which is

similar in form to the usual F-test for the interaction

in a block designrANOVA. Under our design, the

likelihood ratio statistic, G2, for the culture=dosec
2 Ž .Ž .interaction is distributed as x with 5y1 3y1

Ž .s8 degrees of freedom df . Departure from H iso

w 2Ž . 2 xindicated if the P-value PsP x 8 GG dropsc

below a pre-assigned a-level.

The likelihood ratio computations must be per-

formed on a computer. We employ the SASw com-

puter package via its GLiM procedure Proc Genmod
w x w12 . Sample SAS code for fitting the complemen-

Ž .tary log–log model under Eq. 3 is given in Fig. 1.

To identify the likelihood ratio statistic in Proc Gen-

mod, invoke the Type 1 option in the Model state-

ment, being sure to order the model components with
xculture first, dose second, and culture)dose last.

If a particular chemicalrstrainrS9 combination

of interest tests negative for culture=dose interac-

tion, we can move directly to testing the main effect

due to dose. This translates to the null hypothesis

H : d sd sPPPsd . The alternative hypothesis,o 0 1 4

H , is that some departure from pure equality existsa

among the d s. The SAS output again provides ak

likelihood ratio statistic, G2, that is referenced to ad

x 2 distribution with 5y1s4 df ; the corresponding
w 2Ž . 2 xP-value is PsP x 4 GG . When P drops be-d

low a pre-assigned a-level, there is a departure from

H , and hence, some dose effect is indicated.o

If significant, the dose effect can take on many

forms. Of interest in a mutagenicity testing setting is

the set of one-sided departures from the control, H :a k

Ž .d )d ks1, . . . ,4 . If any such alternative hy-k 0

pothesis is significant at the k th dose, it indicates a

significant, dose-related mutagenic effect. Notice that

we can also write H as H : d yd )0.a k a k k 0

To test against these one-sided alternatives, SAS’

Proc Genmod is particularly useful. First, refit the

model after removing the culture=dose interaction.

Then, under the Proc Genmod output for Analysis of

Parameter Estimates, find the point estimates of the

dose effect parameters. Information in these point

estimates is employed in testing against the alterna-

tives H : d yd )0.a k k 0
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Fig. 1. Sample SAS Proc Genmod complementary log–log GLiM code for fitting a two-way model with interaction terms.

Users are cautioned to proceed carefully, how-

ever, since the outputs from the Proc Genmod analy-

sis do not produce point estimates of each d . As isk

Ž .common with two-factor models such as Eq. 1 ,

there are certain identifiability constraints required to
w xcomplete the fit 9 ; SAS defaults to a reference-cell

constraint, where the last d-parameter is set equal to

zero. As a result, the reported SAS ‘‘parameter

estimates’’ turn out to be estimates of the differences

d yd , ks0,1, . . . ,4. Admittedly, this SAS artifactk 4

can add confusion to the analysis, but it is a neces-

sary consequence of the two-factor model being
Ž .employed in Eq. 1 .

For testing against H , this differencing cana k

nonetheless be manipulated to our advantage. The

quantities we wish to study are differences from the

control, so if in the SAS input code, we enter and

code the dose levels such that the control level is

last — say, discard the ks0 subscript and relabel

the control as ks5 — the corresponding ‘‘parame-

ter estimates’’ will relate to the differences d yd ,1 5

d yd , . . . ,d yd . These are the precise differ-2 5 4 5

ences we wish to estimate.

Under this relabeled scheme, denote the SAS

estimates as d yd . The SAS output also suppliesk 5

w xstandard errors, se d yd , from which a Waldk 5

statistic for testing against H is calculated as W sa k k

Ž . w xd yd rse d yd . This is referenced in largek 5 k 5

samples to a standard normal distribution, with cor-
Ž . wresponding one-sided P-value P s1yF W . Thek k

Ž .function F z is the cumulative distribution function
xof the standard normal. However, further caution is

advised here: the SAS output also reports P-values

under the heading Pr)Chi, but these are actually

two-sided P-values. To convert them to the one-sided
Ž .values we desire, use the following rule: i if the

output ‘‘parameter estimate’’ d yd is zero or posi-k 5

tive, divide SAS’ output P-value by two to find P ,k

Ž .or ii if the ‘‘parameter estimate’’ d yd is nega-k 5

tive, divide SAS’ output P-value by two and sub-

tract this from 1.0 to find P .k

It is important to recognize that in most cases, this

analysis of the dose-effect will be performed at all

non-zero dose levels. Thus, e.g., under our ks5

construction, there are four separate significance tests

being performed for the dose effect. Each is a com-

parison of a specific dose level against the control

level; hence this is often called a multiple compari-
Žson with the control, or a ‘‘MCC.’’ Some authors
.also call this a many-to-one analysis. Due to the

multiple comparisons being performed, however,

there will be an inflation in the false positive error

rate for testing the dose effect. One possible MCC

adjustment to account for error inflation that operates

well with binomial GLiMs is a simple Bonferroni
w xcorrection 13 : this amounts to multiplying the raw
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Fig. 2. Sample SAS Proc Genmod complementary log–log GLiM code for fitting a one-way model of only dose. Model assumes a

significant culture=dose interaction and consequently stratifies the analysis over levels of culture.

P-value by the number of individual comparisons

being made. In our case, the MCC-adjusted P-value
) � Ž .4at each of the four dose levels is P s4 1yF W .k k

Reject in favor of the one-sided alternative H ifa k

P) drops below a .k

2.4. Statistical analysis under significant culture=

dose interaction

When a particular chemicalrstrainrS9 combina-

tion tests positive for culture=dose interaction, the

MCC analysis described above must be modified,

since we cannot make interpretable inferences about

the main dose effect in the presence of a significant

interaction. In this case, we are forced to assess the

possible dose effects at a simpler level. Specifically,

we test for a dose-related increase by assessing the

dose effect at each level of culture — under our

design this is at each js1,2,3. In effect, we stratify

the dose analysis over the levels of culture.

The computations for this stratified analysis are

no more complex than those for testing the main

effects; sample SAS code for this is given in Fig. 2.

The resulting output contains a dose analysis at

every level of the culture indicator. In each case,

conduct the analysis in the same manner as above,

i.e., read the parameter differences d yd from thek 5

Analysis of Parameter Estimates output, calculate the

correct one-sided P -values, adjust the P s for mul-k k

tiplicity via a Bonferroni correction, etc. If any of the

three per-culture tests of dose effect indicates a

significant increase over the corresponding control

response, we judge the dose effect to be significant.

3. Results: example with cumene hydroperoxide

and nitrofurantoin

To illustrate the complementary log–log analysis,

we selected two different chemicals from our previ-
w x Žous study 5 : cumene hydroperoxide CASRN 80-

. Ž .15-9 and nitrofurantoin CASRN 67-20-9 . The first

represents a case of no culture=dose interaction so

that main-effect testing is warranted; the second

illustrates a case where a significant culture=dose

interaction requires a stratified analysis.

3.1. Example 1: cumene hydroperoxide

Cumene hydroperoxide is a chemical intermedi-

ately used to synthesize organic peroxides for the

Table 1

Proportions of positive wells in Ames IIe Strain TA7006 after

exposure to cumene hydroperoxide. Case: no S9 activation

Ž Ž ..Replicate Dose index doses in mgrml

culture Ž . Ž . Ž . Ž . Ž .ks5 0 ks1 1 ks2 5 ks3 10 ks4 25

js1 3r144 1r144 6r144 21r144 4r144

js2 4r144 3r144 15r144 17r144 3r144

js3 1r144 3r144 11r144 13r144 2r144
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Table 2

Results from complementary log–log analysis of data from Ames IIe Strain TA7006 after exposure to cumene hydroperoxide. Case: no S9
Ž .activation data from Table 1

Dose MCC Estimated SAS two-sided Upper one-sided Bonferroni adjusted
a )level, k comparison difference P-value P-value P -valuek

b1 d –d y0.1353 0.7938 0.6031 N.S.1 5

2 d –d 1.4156 0.0003 0.0002 0.00072 5
y7 y7 y63 d –d 1.9054 5.43=10 2.72=10 1.09=103 5

4 d –d 0.1185 0.8073 0.4037 N.S.4 5

a
SAS typically limits its output P-values to only four digits of accuracy. For values of P-0.0001, we have supplied more accurate

values based on direct computations.
b
N.S.sNot significant.

manufacture of plastic resins and polymerization cat-

alysts. Table 1 contains proportion response data

from the original study in Ames IIe Strain TA7006

with no S9 activation. Notice the coding of the

control dose as ks5.

Applying the SAS code in Fig. 1 to these data

results in the following likelihood ratio test for the

culture=dose interaction: G2s8.3326, with P-c

value Ps0.4017. At as0.05, this is insignificant,

so we continue with this analysis and move to the

tests of the dose main-effect. The overall likelihood

ratio statistic for the dose effect is G2s71.163, withd

a P-value of P-0.0001. Although significant, this

omnibus P-value provides no guidance regarding

which dose levels deviate significantly from the con-

trol, and also judges departures below the control

level equal in importance to those that exceed the

control level. For a more pertinent analysis, the

one-sided MCC analysis described above is required.

The SAS output for the main-effect MCC analysis

gives the results in Table 2. From the Bonferroni-ad-

justed P)-values, we see that a significant increase

in mutagenic response over the control is observed at
Ž .the middle two dose levels P-0.001 in both cases .

This represents definitive evidence of mutagenicity

for this chemical in Ames IIe Strain TA7006.

3.2. Example 2: nitrofurantoin

The pharmaceutical product nitrofurantoin is a

potent germicide employed to treat urinary tract in-

fections. Proportion response data from the original

study in Ames IIe Strain TA7004 with no S9 activa-

tion are given in Table 3. Again, notice the coding of

the control dose as ks5.

Applying the SAS code in Fig. 1 to these data

results in the following likelihood ratio test for cul-

ture=dose interaction: G2s47.3442, with a P-c

value of P-0.0001. At as0.05, this is significant,

so to analyze the dose effect, we must turn to a

culture-stratified analysis. Applying the SAS code in
ŽFig. 2 yields the results given in Table 4. Notice

that the Bonferroni-adjusted P)-values are the raw

one-sided values multiplied now by 12. This is be-

cause there are 4=3s12 different MCC compar-
.isons being performed for this data set. From the

Bonferroni-adjusted P)-values, we observe signifi-

cant increases in mutagenic response at the two

middle doses for all the three cultures, along with

significant increases at high dose in the first culture

and at the low dose in the last culture. We view this

pattern of consistent increases across cultures as

indicative of a significant mutagenic effect, rather

Table 3

Proportions of positive wells in Ames IIe Strain TA7004 after exposure to nitrofurantoin. Case: no S9 activation

Ž Ž ..Replicate Dose index doses in mgrml

culture Ž . Ž . Ž . Ž . Ž .ks5 0 ks1 0.1 ks2 0.5 ks3 1.0 ks4 5.0

js1 5r144 6r144 44r144 76r144 36r144

js2 6r144 18r144 50r144 70r144 5r144

js3 2r144 18r144 53r144 92r144 13r144
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Table 4

Results from a complementary log–log analysis, stratified by level of culture, of data from Ames IIe Strain TA7004 after exposure to
Ž .nitrofurantoin. Case: no S9 activation data from Table 3

Dose level, k MCC Estimated SAS two-sided Upper one-sided Bonferroni adjusted
a )comparison difference P-value P-value P -valuek

Culture: js1
b1 d –d 0.1859 0.7588 0.3794 N.S.1 5

y7 y7 y62 d –d 2.3339 7.71=10 3.85=10 4.62=102 5
y11 y11 y103 d –d 3.0555 3.90=10 1.95=10 2.23=103 5
y6 y54 d –d 2.0969 5.63=10 1.13=10 0.00024 5

Culture: js2

1 d –d 1.1434 0.0153 0.0076 0.09181 5
y8 y8 y72 d –d 2.3047 9.82=10 4.91=10 5.89=102 5
y10 y11 y103 d –d 2.7500 1.08=10 5.40=10 6.48=103 5

4 d –d y0.1859 0.7588 0.6206 N.S.4 5

Culture: js3

1 d –d 2.2563 0.0025 0.0013 0.01501 5
y6 y7 y62 d –d 3.4909 1.27=10 6.35=10 7.62=102 5
y9 y9 y83 d –d 4.2881 2.05=10 1.02=10 1.23=103 5

4 d –d 1.9118 0.0118 0.0059 0.07084 5

a
SAS typically limits its output P-values to only four digits of accuracy. For values of P-0.0001, we have supplied more accurate

values based on direct computations.
b
N.S.sNot significant.

than as a series of random jackpot increases. This

represents definitive evidence of mutagenicity for

this chemical.

4. Discussion

We find the complementary log–log GLiM to be

a useful model under which to test interaction and

MCC dose effects when presented with data in the
Žform of proportions i.e., number of positive wells

.divided by total number of wells from the AMAXe

protocol. Facilitated by the use of simple SAS pro-

gramming code, the statistical methods can be easily

implemented. Using the SAS output, multiplicity-ad-

justed P)-values are straightforward to calculate and

can yield proper inferences on the ability of a chemi-

cal or environmental agent to induce mutagenesis in

these Ames IIe strains. The examples displayed

above were chosen to be representative of the larger

body of experimental results reported from our pre-
w xvious, larger study of the AMAXe protocol 5 .

Both illustrate the methodology and show qualitative

agreement with our corresponding previous results.

It is interesting to note that in both examples, the

dose response is non-monotone, i.e., in both Tables 1

and 3, there is a consistent increasing-then-decreas-

ing trend in the response as dose increases. This is
w xnot uncommon with Ames test data 14 , and we

were not surprised by the phenomenon here. The

MCC methods we apply to detect the increases

above the background response are designed to be
Žunaffected by such downturns. Although this is at

the cost of some sensitivity to detect a monotone-in-

creasing trend over dose, if one did exist. If desired,

a trend test that accounts for the downturns may be
w xuseful, such as that suggested in Ref. 15 or Ref.

w x16 . The issue of testing non-monotone trend specif-

ically with the proportion data is problematic, how-
w xever 17,18 , and is open for further statistical re-
.search.

One additional problem for further statistical study

concerns the small-sample properties of the Bonfer-

roni-adjusted MCC inferences that form the core of
w xour dose analysis. Previous research 13 has sug-

gested that the Bonferroni correction exhibits accept-

able false positive error properties for binomial-based
ŽGLiMs under a simple one-way model say, with
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.only a single factor such as Dose . The correction is

generally conservative in that it protects against

false-positive errors too strenuously, but as the sam-

ple size increases, this conservative nature tends to

lessen somewhat. Whether this performance carries

over to the two-way setting with interaction, as

studied herein, is unclear. Clearly, more research is

required in this area.
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