1. Intended use:
The Fibrifen 1 kit is a thrombin reagent proposed for the quantitative determination of Fibrinogen in human citrated plasma using a clotting method (Clauss method).

2. Assay principle:
In the presence of a constant and in excess amount of thrombin, the clotting time obtained for a diluted citrated plasma depends on the plasma fibrinogen concentration.

3. Assay specimen:
Human plasma obtained from Trisodium Citrate anticoagulated blood.

4. Reagents:
Each kit contains 6 vials of 1 ml of reagent, containing calcium thrombin from bovine origin (about 100 NIH/ml), lyophilized in presence of an heparin neutralizing substance, preservatives and stabilizers.

5. Reagents and material required, but not supplied:
- Pipettes with dispensing volumes from 20 µl to 1,000 µl
- Semi-automatic or automatic coagulation instrument, or fibrometer or electromagnetic water bath.
- Distilled water.
- Imidazole Buffer (# AR021A/AR021K/AR021L).
- Reference normal citrated human plasma pool, or plasma calibrator titrated for Fibrinogen (BIOPHEN Plasma Calibrator - # 222101).
- Normal and Abnormal quality control plasmas, titrated for Fibrinogen (BIOPHEN Normal Control Plasma - #223201 and BIOPHEN Abnormal Control Plasma - #223301).

6. Reagent preparation and stability:
In the original package, and before any use, when stored at 2-8°C, the reagent is stable until the expiration date printed on the kit.
- **Reagent Preparation:**
 Restore each vial with 1 ml of distilled water; mix gently until complete dissolution of the content (vortex), let to stabilize for about 30 min. at room temperature (18-25°C); homogenize before each use.
- **Reagent stability following reconstitution:**
 - 7 days at room temperature (18-25°C).
 - 14 days at 2-8°C.
 - 1 month frozen at -20°C or below
In the original vial, provided that any contamination or evaporation is avoided.

7. Sample collection and preparation:
Blood (9 vol.) must be collected on 0.109M (or 0.129M) trisodium citrate anticoagulant (1 vol.); plasma supernatant is decanted following a 15 min. centrifugation at 2,500 g. Citrated plasma must be tested within 4 hours when stored at room temperature (18-25°C), or it can be frozen at –20°C or below for up to 1 month. Just before use, the plasma must be thawed for 15 min. in a water bath at 37°C.

8. Protocol:
- **Calibration curve:**
The calibration curve can be established with a normal citrated human plasma pool with a determined Fibrinogen concentration (C* g/L), or with BIOPHEN Plasma Calibrator (# 222101), using the Fibrinogen concentration (C) indicated on the flyer for the lot used. Prepare 2 ml of calibrator diluted 1:5 in imidazole buffer (note: by definition, the 1:20 dilution of the calibrator corresponds to a concentration of *C* g/L of Fibrinogen). Using this 1:5 preparation, the calibration curve is obtained as follows:

<table>
<thead>
<tr>
<th>Fibrinogen (g/L)</th>
<th>C:2</th>
<th>C</th>
<th>2C</th>
<th>4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution</td>
<td>1:40</td>
<td>1:20</td>
<td>1:10</td>
<td>1:5</td>
</tr>
<tr>
<td>Calibrator dil. 1:5</td>
<td>0.125 mL</td>
<td>0.250 mL</td>
<td>0.500 mL</td>
<td>1 mL</td>
</tr>
<tr>
<td>Imidazole Buffer</td>
<td>0.875 mL</td>
<td>0.750 mL</td>
<td>0.500 mL</td>
<td>0mL</td>
</tr>
</tbody>
</table>

The calibration curve must be used within 2 hours at room temperature (18-25°C).

- **Preparation of tested plasma, and quality controls:**
 Tested plasma must be diluted 1:20 in imidazole buffer. The diluted plasma must be tested within 2 hours.

- **Assay:**
 Mechanical manual method:
 Principle: a mechanical coagulation indicator, such as a metal ball or index, or balancing, is used for detecting clotting. The test is performed at 37°C.
 Preincubate the reagent at 37°C.
 Into a small test tube, or in the reaction cuvette of the coagulation instrument, introduce:
 - 200 µL of calibration solution, or of tested plasma diluted 1:20.
 - Incubate for 2 min. at 37°C, and then introduce (starting the stop-watch):
 - 100 µL of Fibrinen reagent (preincubated at 37°C).
 Record the clotting time CT (in seconds).
Automatic Method:
The assay can be used with the semi-automatic or automatic instruments, such as STA-R, KC-10, etc...
The usual program used for testing Fibrinogen by clotting assay (Clauss method) can be applied. The respective specimen and reagent volume ratios indicated for the manual method must be strictly respected. Usually, with automatic methods the volumes used for reagents and diluted tested plasma are half those recommended for the manual method.
With semi automatic or automatic instruments, especially those with a photometric detection of clot formation, obtained clotting times can be slightly different from those obtained with the manual method.
Adaptations on the main coagulation analyzers are available upon request.

9. Expression of results:
On a bi-logarithmic graph paper, plot on abscissae the Fibrinogen concentrations (in g/L) and on ordinates the corresponding clotting times (in sec).
The Fibrinogen concentration in the tested sample (diluted 1:20) is directly obtained on the calibration curve. Results are expressed in g/L Fibrinogen.
Using automated methods, the Fibrinogen concentrations are directly calculated by the analyser, respectively to the calibration curve, and the sample dilution used.

10. Example of Calibration curve:
This calibration curve, obtained using the manual method, is indicated as an example only.

![Image](https://via.placeholder.com/150)

Only the calibration curve generated for the series of assays performed must be used for calculating the results.

11. Quality Control:
Using quality control plasmas, titrated for Fibrinogen, allows validating the calibration curve, as well as the homogeneous reactivity from run to run, when using a same lot of reagents. Various control plasmas are available:
• BIOPHEN Normal Control Plasma: (ref 223201).
• BIOPHEN Abnormal Control Plasma: (ref 223301).
The clotting time obtained for a repeat test and with the same reagent lot can slightly vary according to the instrument used and the clot detection mode and sensitivity adjustment. Each laboratory should establish and validate its own usual range, as well as acceptance ranges, in its specific test conditions.

12. Interferences and limits:
Various drugs or therapies can affect the results (eg: anti-thrombin substances may interfere in the assay and prolong the obtained clotting time). An additional investigation should be conducted to determine the origin of each unexpected or abnormal result.

A "repeat" clotting time for a sample even with the same reagent lot can vary slightly according to the instrument used, and the clot detection mode and instrument setting (clot detection sensitivity). Each laboratory should check and validate its own usual range, as well as target values and acceptance ranges for new lot of controls, in its specific test conditions.
Any sample presenting an abnormal aspect (eg: lipaemic, haemolysed, partial coagulation…) should be rejected.
The Fibrinogen reagent contains a heparin neutralizing substance.
There was no significant interference noticed for heparins UFH, LMWH, Arixtra, Hirudin, Argatroban®, Fibrin degradation products (FDP), respectively up to 2 IU/ml, 2 IU/ml, 2 µg/ml, 5 µg/ml, 2 µg/ml, 130 µg/ml added to plasma.

13. Normal values:
Normal values for Fibrinogen are usually in the range 2-4 g/L.

14. General information and Applications:
Fibrinogen is a 340 Kd soluble plasma glycoprotein, synthesized in the liver, containing 6 peptide chains, with a 2 to 2 symmetry, and linked by disulfide bridges (2 Aα, 2 Bβ, and 2 γ chains). Thrombin clots fibrinogen and forms fibrin, which is stabilised by activated factor XIII in presence of calcium. Fibrinogen is lysed by plasmin to fragments X and Y, first, then D and E. (1,3)
Fibrinogen concentration in normal human plasma is usually in the range 2 to 4 g/l. Elevated fibrinogen concentrations (> 4g/l) are observed in clinical situations associated with inflammation (3). Elevated Fibrinogen levels have also been studied as a risk factor for cardiovascular disease and thrombosis (2,3,4)
Hypofibrinogenemia is mainly associated with severe liver disease, and excessive consumption of fibrinogen (DIC, hyperfibrinolysis) (3,4).
Numerous variants of fibrinogen have been described, associated to asymptomatic cases, or to cases with bleeding and/or thrombosis (3, 5).

15. Indicative performances and Assay variations:
The indicative clotting times observed for this assay are in the range 4-7 seconds, and about 22 ± 5 seconds, respectively for the 12g/L or 3 g/L Fibrinogen concentrations, using the water bath or STA method.
Indicative performances obtained in these conditions are as follows:

- **Dynamic range:** 1–12 g/L (for a sample assayed at the 1:20 dilution)
- **Accuracy:** as an example, the following results were obtained using the STA-R instrument:

<table>
<thead>
<tr>
<th>Fng (g/L)</th>
<th>N</th>
<th>Intra assay CV (%)</th>
<th>Inter assay CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>2.67</td>
<td>10</td>
<td>2.3%</td>
</tr>
<tr>
<td>Sample 2</td>
<td>1.47</td>
<td>10</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

- The Fibrinogen reagent shows good correlation with STA-Fib2 reagent (Diagnostica Stago), performed on STA-R instrument:

 \[N=58 \quad r^2 = 0.989 \quad Y = 1.02X - 0.16 \]

16. References:
- Claus A. Rapid physiological coagulation method for the determination of fibrinogen. Acta Haematol 1957;17:237-46 (German)."