MICROPARTICLES AND FIBRINOLYSIS
Micro-Particles and Fibrinolysis

- Are two major biological systems objectivating and regulating the state of body’s functions.

- Microparticles, consequence and cause of disease, contribute to its « evolution ».

- Fibrinolysis is a « multi-function » system, of difficult laboratory evaluation, involved in: brain/knowledge; fertility; malignancy; thrombosis/reperfusion.
Fibrinolysis Functions

- Neurology (brain)
- Malignancy (metastasis)
- Fertility
- Cell Remodelling
- Thrombosis
Fibrinolysis is a key system in life, probably still under evaluated.

Important (but occult?) function in regulating many biological functions.

Diagnostic and prognostic value for the major parameters (tPA, PAI-1, uPA, uPAR…).

Diagnostic potential of other factors (TAFI, PAI-2, MMPs, TIMPs,…).
Blood Clot: The Fibrinolysis Target
FIBRINOLYSIS IN BODY

- **Intra-vascular:** Mainly triggered by tPA

 - Plasmin \Rightarrow Clot dissolution

 Body defence against thrombosis, Recanalisation, Thrombolytic therapy.

- **Extra-vascular:** Mainly triggered by uPA

 - Plasmin \Rightarrow MMPs

 Matrix degradation and Tissue Remodelling or Neovascularisation (Cancer/Metastasis, Fertility, Cognitive functions of brain).
FIBRINOLYSIS REGULATION

Highly regulated biological system
- Early Progenitors release tPA
- Cells in later stages secrete uPA

Equilibrium between Activators and Inhibitors
- Intravascular: tPA-uPA/PAI-1, Plasminogen/α2AP/TAFI/HRGP/, MMP2-MMP-9/TIMP1-2
- Extravascular: uPA-uPAR/PAI-1, MMPs/TIMPs

Edinburgh March, 2009
FIBRINOLYSIS ACTIONS

Extra-vascular

Intra-vascular

- tPA
- Pm
- Plg
- MMPs
- TIMPs
- PAI-1
- uPA
- uPA-R
- Clot
- TAFI
- α2AP/Plg
- HRGP
- Pm-α2AP
- PAI-1
- uPA
- PAI-1

Edinburgh March, 2009
Schema of Fibrinolysis
tPA concentration in the micro-environment and in blood circulation

- tPA
- PAI-1
- α2AP
- α2M
- C1-INH

Clot

Trace Amounts
Free tPA

Edinburgh March, 2009
PAI-1 in blood vessels

uPA → tPA → PAI-1

PAI-1 (VTN) (liver) → PLT

PAI-1 (IN) → tPA-PAI-1 → uPA-PAI-1 → Latent PAI-1

Edinburgh March, 2009
MAJOR DIAGNOSTIC FIBRINOLYSIS ANALYTES

INTRAVASCULAR (PLASMA)
- tPA
- PAI-1
- uPA
- MMP-2
- MMP-9
- TIMP-1

EXTRAVASCULAR (Tissues)
- uPA
- uPA-R
- PAI-1
- MMPs/TIMPs
FIBRINOLYSIS IN BRAIN

- tPA involved in knowledge and protects from Alzheimer disease (tPA knock out mice model).
- When excessive in brain, can contribute to matrix degradation and aneurysm.
- Reactive fibrinolysis to cerebral thrombosis contributes to brain damage in stroke.
Yin and Yan effect of tPA in brain

Matrix degradation (negative)

Reperfusion (positive)

Edinburgh March, 2009
Clinical applications of Fibrinolysis

- Metabolic Syndrome (X-Syndrome)
- Diabetes, Type II (not affected by Type I)
- Cardiovascular diseases (predictive value of tPA, PAI-1?, ...)
- Malignancy (Breast Cancer, ...), etc ...
ISSUES IN EVALUATING FIBRINOLYSIS

- It is a site targeted activity, promptly inhibited out of this location.
- Promoted and inhibited by locally secreted factors, present at high concentrations « only at these sites ».
- Very low residual active factors in blood circulation, and at low concentrations.
Microparticles as diagnostic markers

Endothelium

Platelets
R B C

W B C

Hypercoagulability
Inflammation
Infection
Malignancy

Edinburgh March, 2009
Form AH100
03-2009
Edinburgh March, 2009
Microparticles

- Long shelf life (≈ 6 days)
- Bind to Annexin V
- Released from many blood cells
- Bear CDs, TF, TM, GP IÎ±-IIIa, ...
Cellular origin of microparticles

- **Platelets** (activation of coagulation)
- **Endothelial cells** (auto-immune diseases, TTP, activation of coagulation)
- **Monocytes** (inflammation, infection, …)
- **Leucocytes** (inflammation, …)
- **Lymphocytes** (diabetes mellitus, …)
- **Tumoral cells**
GENERATION OF MICROPARTICLES

Vessel

- WBC
- RBC
- Plt
- TRIGGER
- μp
- EC
- Plt

DISEASE

Edinburgh March, 2009
Platelet activation

Resting

Activated
Platelet activation

Resting Platelet Activation Adhesion and spreading
Haemostasis and cell membrane remodeling

Microparticles = in vivo cell activation markers

Stimulus

Pro-inflammatory, Pro-apoptotic, Procoagulant...

Vesiculation

MP

Thrombin

[Ca^{2+}]_i

Ca^{2+}

Ca^{2+}

Cytoskeleton proteolysis

« flippase » activity

« floppase » activity

Edinburgh March, 2009

Edinburgh March, 2009
Characteristics of MPs

- The general consensus is that MPs are small: 0.1 to 1µm.
- Microparticle membranes consist mainly of lipids and proteins.
- Expose the anionic phospholipids: PS.
- Express membrane antigens that reflect their cellular origin and the cellular processes triggering their formation.
PATHOLOGICAL MICROPARTICLES

- Myocardial infarction
- Diabetes
- Cancer
- Paroxystic Haemoglobinemia
- Hypertension
- Acute Coronary Syndrome
- type I Diabetes
- Lupus Anticoagulant
- HIV
- Sepsis
- Preeclampsia
- type II Diabetes

Martinez et al., Am. J. Physiol (2005)
Edinburgh March, 2009
Microparticles

Cause and consequence of disease states

DISEASE

Procoagulant
Pro-inflammatory
Clinical usefulness of MPs study

- Modulate the Hemostatic balance and can cause its disruption.
- Procoagulant MPs in Immune-mediated Thrombosis.
- Procoagulant MPs in Atherothrombosis.
- Angiogenesis and MPs.
- Circulating MPs: Effectors in the Tuning of Thrombotic Propensity Associated with Cardiovascular Risk.
- Pharmacological Modulation of Circulating MPs.
Clinical applications of MPs

- Prognosis of myocardial infarction.
- Follow-up and therapy monitoring of patients with myocardial infarction.
- Prognosis of recurrence risk.
- Diabetes, Malignancy, Pregnancy.
Pathological variations of microparticles

- Elevated in M.I. (x2 to x10)
- Elevated in cancer (predictor of metastasis?)
- When Elevated, can predict vascular complications in diabetes
- Elevated in haemophilia (x10)
- During Novoseven (VIIa) therapy
- Correlates with severity of hypertension

Note: responds to therapy efficacy
MPs can be measured in atherosclerotic plaques...

... and in Blood!
Evaluation of Microparticles

Flow Cytometry:
- Only « large microparticles (> 0.4 µ) are measured (size, content).
- Characterised by antibody/label used.

Activity/Immuno-Assay:
- All MPs are measured (including < 0.4 or 0.1 µ)
- Measurement of associated procoagulant activity (PS equivalent).
- Identification of cell origin with MoAbs.
Microparticle measurement

Different methodologies are available for MPs determination:

- Flow cytometry relies on the antigenic composition of MPs and allows them to be enumerated according to their cellular origin.

- ELISA capture with Annexin V or antibody and determination of procoagulant activity of MPs.
Microparticles in Fibrinolysis

- Elevated PAI-1 induces an important release of endothelial MPs with procoagulant activity.
- Cancer cells release microparticles exposing TF, or uPAR-uPA.
- Chemotherapy generates microparticles from tumoral cells, possibly inducing fibrinolysis (ovarian, prostatic malignancies, acute promyelocytic leukemia,...) and/or thrombosis.
Endothelial MPs
Fibrinolytic Markers and Microparticles in Cancer

- Cancer cells promote fibrinolysis for migrating, producing metastasis (uPAR-uPA and MMPs mediated).
- Fibrin protects from tumor growth, but also protects malignant cells from host defence.
- Fibrin attracts EC and favors angiogenesis.
- Cancer cells generate TF and MPs exposing TF, inducing « hypercoagulability ».
Emerging markers of tumor invasion

They bring complementary information on disease activity to usual cancer markers:

- **Measured in tissue extracts:**
 - uPA
 - PAI-1
 - uPA-PAI-1 complexes
 - TF
 - Breast Cancer, many tumors
 - Many Tumors (lung, panceatic, gastric,....)

- **Measured in plasma:**
 - MMP-2
 - MMP-9
 - TIMP-1
 - MMP-9-TIMP complexes
 - Tumors invasiveness

Edinburgh March, 2009
Conclusions

- Fibrinolysis and Micro-Particles are emerging or «rediscovered» body’s functions with multiple impacts and implications in diseases.
- Their laboratory exploration can contribute to management of pathology and therapy monitoring.
- Understanding their mechanisms of action is useful for new drug developments.
- High potential, in clinical practice, provided that pre-analytical variables are well controlled.